检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈子东
机构地区:[1]广东工业大学自动化学院,广东 广州
出 处:《计算机科学与应用》2023年第12期2379-2386,共8页Computer Science and Application
摘 要:工业制造任务日趋复杂,组件服务组合优化问题相关的指标日益增多,需要综合考虑各个评价指标,从备选服务中筛选出最优服务组合。本文针对工业制造的特点,从服务成本、服务时间等服务质量(QoS)指标构建了组件服务评价指标体系。为了处理高维多目标优化问题并针对非支配排序遗传算法(NSGA-Ⅱ)只能求得最优解集的特点,本文提出改进ε-约束策略融合Pareto支配改进NSGA-Ⅱ算法,并将NSGA-Ⅱ和模糊决策相结合,利用模糊决策从最优解集中寻找最优解。With the increasingly complex tasks in industrial manufacturing, the metrics related to the optimization of component service combinations are growing. It’s essential to comprehensively consider various evaluation metrics to filter out the optimal service combinations from alternative services. This paper, targeting the characteristics of industrial manufacturing, constructs a framework of evaluation metrics for component services based on QoS indicators such as service cost and service time. To address high-dimensional multi-objective optimization problems and considering the lim-itation of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) in obtaining only the optimal solution set, this paper proposes an improved ε-constraint strategy integrated with the Pareto dominance-enhanced NSGA-II algorithm. Additionally, it combines NSGA-II with fuzzy deci-sion-making to search for the optimal solution within the obtained optimal solution set using fuzzy decision-making methods.
关 键 词:工业软件组件服务组合 多目标优化 改进NSGA-II算法
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7