检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机科学与应用》2024年第3期120-138,共19页Computer Science and Application
摘 要:随着无人机应用的日益广泛,对无人机路径规划的需求也越来越大,但大多数现有的基于进化算法的路径规划将整条路径作为一个个体进行优化,这可能导致一些潜在的路径点被忽视。此外,由于3D环境难以网格化,传统的基于网格的智能搜索算法,如蚁群算法等,在复杂3D环境中难以有效解决无人机路径规划问题。鉴于此,本文提出一种基于点集进化的无人机路径规划算法,该算法将每个控制点作为一个个体,根据路径的有序性设计了一种高效的杂交算子来生成新的控制点,基于控制点集使用经典的Dijkstra算法搜索并构建路径,从而计算每个控制点的适应度用来更新控制点集。该算法将经典路径规划算法与进化算法相结合,既具有经典算法的高搜索效率,又具有进化算法的全局搜索能力。实验结果表明,所提算法在解决复杂3D环境中的无人机路径规划问题时表现良好且稳定。With the increasing application of Unmanned Aerial Vehicle (UAV), there is a growing demand for UAV path planning. However, most existing path planning based on evolutionary algorithm opti-mize the whole path as an individual, which causes some potential waypoints are ignored. Addi-tionally, traditional algorithms, e.g. Ant Colony Optimization (ACO) struggle to effectively solve UAV path planning in complex 3D environments, where grid-based approaches are difficult to implement. Therefore, this paper proposes a UAV path planning based on Point Set Evolution (PSEA). In the proposed algorithm, each control point is treated as an individual, and Dijkstra algorithm is utilized to search and construct paths, thus calculating the fitness value for each control point. Fur-thermore, an efficient crossover operator is designed based on the order of the paths, and Evolu-tionary algorithm is employed to update the set of control points. The proposed algorithm features the efficiency of classical path planning algorithms with the global search capability of Evolutionary algorithm. The experiment results demonstrate that the proposed PSEA performs well and remains stable in solving UAV path planning in complex 3D environment.
关 键 词:无人机路径规划 进化算法 DIJKSTRA算法 控制点 复杂3D环境
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.38.11