检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机科学与应用》2024年第5期244-254,共11页Computer Science and Application
摘 要:人工势场法是目前路径规划常用的算法之一,但其存在的局部最小值问题会导致智能移动机器人无法到达目标点。本文针对人工势场法局部最小值优化的三种算法展开研究。文章选择了算法运行平均时间和成功到达目标点的成功率作为研究对象,通过设置三种优化算法在不同障碍物下运行,观察不同设置情景下算法运行时间和成功率的变化,得到这三种优化算法的各自适合的障碍物环境。文章为这三种优化算法的应用提供了参考依据。Artificial potential field method is one of the commonly used algorithms for path planning, but its local minimum problem will cause the intelligent mobile robot to fail to reach the target point. In this paper, three algorithms for local minimum optimization of artificial potential field method are studied. In this paper, the average running time of the algorithm and the success rate of successfully reaching the target point are selected as the research objects. By setting three optimization algorithms to run under different obstacles, the changes of the running time and success rate of these algorithms under different setting scenarios are observed, and the obstacle environment suitable for each of the three optimization algorithms is obtained. This paper provides a reference for the application of these three optimization algorithms.
分 类 号:TP2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33