人工势场法局部极小值优化方法研究  

Study on Local Minimum Optimization Method of Artificial Potential Field Method

在线阅读下载全文

作  者:接娅纯 申禹繁 胥保春 

机构地区:[1]南京工程学院机械工程学院,江苏 南京

出  处:《计算机科学与应用》2024年第5期244-254,共11页Computer Science and Application

摘  要:人工势场法是目前路径规划常用的算法之一,但其存在的局部最小值问题会导致智能移动机器人无法到达目标点。本文针对人工势场法局部最小值优化的三种算法展开研究。文章选择了算法运行平均时间和成功到达目标点的成功率作为研究对象,通过设置三种优化算法在不同障碍物下运行,观察不同设置情景下算法运行时间和成功率的变化,得到这三种优化算法的各自适合的障碍物环境。文章为这三种优化算法的应用提供了参考依据。Artificial potential field method is one of the commonly used algorithms for path planning, but its local minimum problem will cause the intelligent mobile robot to fail to reach the target point. In this paper, three algorithms for local minimum optimization of artificial potential field method are studied. In this paper, the average running time of the algorithm and the success rate of successfully reaching the target point are selected as the research objects. By setting three optimization algorithms to run under different obstacles, the changes of the running time and success rate of these algorithms under different setting scenarios are observed, and the obstacle environment suitable for each of the three optimization algorithms is obtained. This paper provides a reference for the application of these three optimization algorithms.

关 键 词:人工势场 局部最小值 优化算法 

分 类 号:TP2[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象