检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨师范大学计算机科学与信息工程学院,黑龙江 哈尔滨
出 处:《计算机科学与应用》2025年第2期118-131,共14页Computer Science and Application
基 金:哈尔滨师范大学双一流–提高人才培养质量项目(1504120015);哈尔滨师范大学计算机科学与信息工程学院教育教学改革项目(JKYJGY202205)。
摘 要:针对传统的k-means算法的聚类数目k无法确定、初始聚类中心随机给定、容易受到离群点影响等问题,该算法使用LOF (Local Outlier Factor)离群点检测算法计算数据集中每个数据对象的离群因子,并去除离群因子大于指定阈值的数据对象,使用手肘法来确定符合数据集的最佳k值,根据最大密度和最大距离的思想结合每个点的离群因子来选取初始聚类中心并进行后续聚类中心的迭代,聚类完成后结合三支决策的思想对聚类结果的每个簇内的数据对象进行进一步优化。实验结果表明ODT-kmeans算法能合理选取k值、减少离群点的影响并且可以消除随机选择初始聚类中心的问题,提高了k-means聚类算法的准确率。In view of the problems of the traditional k-means algorithm, such as the number of clusters k cannot be determined, the initial cluster center is randomly given, and it is easily affected by outliers, this algorithm uses the LOF (Local Outlier Factor) outlier detection algorithm to calculate the outlier factor of each data object in the data set and remove the data objects whose outlier factor is greater than the specified threshold. The elbow method is used to determine the best k value that meets the data set. The initial cluster center is selected based on the idea of maximum density and maximum distance combined with the outlier factor of each point and the subsequent cluster center iterations are performed. After clustering is completed, the idea of three-way decision is combined to further optimize the data objects in each cluster of the clustering results. Experimental results show that the ODT-kmeans algorithm can reasonably select the k value, reduce the influence of outliers, and eliminate the problem of randomly selecting the initial cluster center, thereby improving the accuracy of the k-means clustering algorithm.
关 键 词:K-MEANS算法 三支聚类 LOF离群点检测算法 聚类中心
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.164.81