检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机科学与应用》2025年第2期179-189,共11页Computer Science and Application
摘 要:多目标多任务优化(MTO)是进化计算领域的重要分支。变量相关性对遗传操作的挑战一直影响着多目标多任务优化的效率,但这一问题尚未得到认真考虑。为此,本文提出了一种基于动态变量相关性消减的多目标多任务进化算法(MTO-DCR),通过结合学习到的变量协方差矩阵进行坐标变换以减少变量相关性。具体而言,MTO-DCR首先通过坐标变换动态减少变量相关性以生成后代。为学习变量相关性,针对每个任务分别维护了独立的协方差自适应搜索。此外,提出了一种基于缩放变换的领域迁移策略,用于将源任务中表现优异的个体迁移到目标任务中。为验证所提MTO-DCR的有效性和效率,构建了一组具有可控非可分性和难度的可扩展MOMTOP测试实例进行实验研究。结果分析及与最新算法(MO-SBO、MO-MaTDE和MO-EMaTO-MKT)的对比表明,所提MTO-DCR能够有效处理具有相关变量的MTO问题。Multi-objective multi-task optimization (MTO) is an important branch of evolutionary computation. The challenge of variable dependency in genetic operations has consistently impacted the efficiency of multi-objective multi-task optimization, yet this issue has not been thoroughly addressed. To this end, this paper proposes a multi-objective multi-task evolutionary algorithm based on dynamic variable dependency reduction (MTO-DCR), which reduces variable dependency through coordinate transformation using a learned covariance matrix. Specifically, MTO-DCR dynamically reduces variable dependency via coordinate transformation to generate offspring. To learn variable dependencies, independent covariance adaptive searches are maintained for each task. Additionally, a domain transfer strategy based on scaling transformation is proposed to migrate well-performing individuals from source tasks to target tasks. To validate the effectiveness and efficiency of the proposed MTO-DCR, a set of scalable MOMTOP test instances with controllable non-separabi
关 键 词:多目标多任务优化 变量相关性 协方差矩阵 域迁移
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147