检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京建筑大学理学院,北京
出 处:《计算机科学与应用》2025年第2期200-208,共9页Computer Science and Application
基 金:国家自然科学基金(12301581);北京市教育委员会科学研究计划项目(KM202210016002)。
摘 要:多标签学习的目标是为每个样本分配一个或者多个标签的集合。在实际应用中,多标签之间通常存在复杂的依赖关系,这为模型的构建带来了挑战。通过将多标签学习问题转化为序列标注问题,能够充分利用标签之间的顺序依赖性,为多标签学习提供新思路。在此框架下,条件随机场(Conditional Random Fields, CRF)因其优异的序列建模能力和概率推断框架,被证明是一种有效的方法。CRF能够通过条件概率建模捕捉输入特征与标签之间的关系,并通过标签间的转移特征建模多标签间的依赖性。相比独立处理各标签的方法,CRF可以建模标签之间的相互影响,从而提高预测的准确性和一致性。通过进一步的理论探索和实践验证,CRF在多标签学习中的应用将变得更加广泛,为学习任务提供强有力的支持。The goal of multi-label learning is to assign a set of one or more labels to each sample. In practical applications, there are often complex dependencies between multiple tags, which brings challenges to the construction of models. By transforming the multi-label learning problem into a sequential labeling problem, we can make full use of the order dependence between labels and provide a new idea for multi-label learning. Under this framework, Conditional Random Fields (CRF) proved to be an effective method due to its excellent sequence modeling ability and probabilistic inference framework. CRF can capture the relationship between input features and labels through conditional probability modeling, and model the dependency between multiple labels through transition features between labels. CRF can model the interactions between labels to improve the accuracy and consistency of predictions compared to methods that treat each label independently. Through further theoretical exploration and practical verification, the application of CRF in multi-label learning will become more extensive and provide strong support for learning tasks.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49