检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北工程大学地球科学与工程学院,河北 邯郸 [2]河北省地质矿产勘查开发局第六地质大队(河北省地质矿产勘查开发局航空测量应用中心),河北 石家庄
出 处:《农业科学》2023年第12期1122-1129,共8页Hans Journal of Agricultural Sciences
摘 要:针对光学遥感数据容易受云、雨等天气影响的不足,本文以黑龙港典型区域为实验区,基于随机森林分类方法探索了采用哨兵1号时序雷达数据为数据源进行农作物精细分类。结果表明:1) Senti-nel-1雷达数据受云、雨等天气状况的影响较小,因此能够构建更加完整的特征曲线以反映农作物生长信息;2) 利用Sentienl-1数据提取VH、VV极化时序数据和纹理特征并构建多种分类方案,其中多时相VH、VV双极化时序数据分类精度最高,纹理特征数据的加入并没有明显提高分类精度。In view of the vulnerability of optical remote sensing data is impacted by weather conditions such as clouds and rain, this article takes the typical area of Heilonggang as the experimental area and explores the use of Sentinel-1 time series radar data as the data source for crop fine classification based on random forest classification method. The results show that: 1) Sentinel-1 radar data is less affected by weather conditions such as clouds and rain, so it can construct more complete feature curves to reflect crop growth information, which has great application value in extracting crop planting structure in the experimental area;2) Using Sentienl-1 data to extract VH and VV polarization time series data and texture features and construct a variety of classification schemes, the results show that the multi-phase VH and VV dual polarization time series data have the highest classification accuracy, and the addition of texture feature data does not significantly improve the classification accuracy.
关 键 词:Sentinel-1 农作物种植结构提取 黑龙港流域
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49