检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西藏民族大学信息工程学院,陕西 咸阳 [2]西藏民族大学马克思主义学院,陕西 咸阳
出 处:《数据挖掘》2023年第2期165-172,共8页Hans Journal of Data Mining
摘 要:针对短视频账号信息内容浅度安全等级分类识别的短视频官方未认证账号进行初级的潜在优质用户划分进行研究。由于账号信息内容浅度安全等级分类识别的特征值相对不多,而且本文要的需求是保证其识别的准确率,故改进了KNN算法,提出选择使用GM-KNN模型来对其进行分类识别。通过网格搜索算法确定了K值的最优参数,将不同距离进行对比,选择了该模型的最优距离曼哈顿距离,实现了潜在优质账号的初步划分。经过实验对比,GM-KNN模型准确率在短视频潜在优质账号的初步划分中均优于其他对比算法。The research is on the primary potential high-quality user division of short video official unauthenticated accounts identified by shallow security level classification of short video account information content. Since there are relatively few eigenvalues for the classification and identification of shallow security levels of account information, and the requirement of this paper is to ensure the accuracy of its identification, the KNN algorithm is improved, and the GM-KNN model is proposed to be used for classification and identification. The optimal parameter of the K value was determined by the grid search algorithm, and the different distances were compared, and the optimal distance of the model was selected, the Manhattan distance, and the preliminary division of potential high-quality accounts was realized. After experimental comparison, the accuracy of GM-KNN model is better than other comparative algorithms in the preliminary division of potential high-quality accounts of short videos.
关 键 词:曼哈顿距离 KNN算法 信息内容 分类识别 安全等级 短视频 网格搜索算法 最优参数
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26