检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《药物化学》2024年第4期276-283,共8页Hans Journal of Medicinal Chemistry
摘 要:随着太赫兹技术的迅速发展和国家对中药行业的支持使其在中药材品质鉴别中成为了热点,但太赫兹光谱数据易受噪声干扰增加了药材鉴别的不确定性,因此需探索出适合中药材太赫兹光谱数据的预处理方法。本研究以当归为例,比较了多种不同预处理方式。同时研究了不同参数对SG平滑和小波变换效果的影响。结果显示,SG + 小波的组合能够有效去除噪声,且具有高效稳定性,是一种可标准化的处理方法;SG + MSC + 小波的组合处理效果最佳,但流程相对复杂,适用于高标准场景。本研究为中药材太赫兹光谱数据的预处理提供了有效方案。With the rapid development of terahertz technology and the national support for the Traditional Chinese Medicine (TCM) industry, it has become a hotspot for identifying the quality of TCM. However, terahertz spectral data is easily affected by noise, which increases the uncertainty of herb identification. Therefore, it is necessary to explore preprocessing methods suitable for TCM terahertz spectral data. In this study, Angelica sinensis was used as an example to compare various preprocessing methods. The effects of different parameters on Savitzky-Golay (SG) smoothing and wavelet transform were also studied. The results show that the combination of SG and wavelet transform can effectively remove noise with high efficiency and stability, making it a standardizable processing method. The combination of SG, Multiplicative Scatter Correction (MSC), and wavelet transform yields the best results, but the process is relatively complex, making it suitable for high-standard scenarios. This study provides an effective solution for preprocessing TCM terahertz spectral data.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49