检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《国际航空航天科学》2021年第1期8-21,共14页Journal of Aerospace Science and Technology
摘 要:该研究提出使用非线性能量阱(Nonlinear Energy Sink, NES)对复杂环境下的大型挠性航天器进行振动抑制,并利用超磁致材料(Giant Magnetostrictive Materials, GMM)采集NES耗散的振动能,达到节约能源的效果。考虑太阳光压和热冲击的影响,建立Hamilton体系下大型挠性航天器的在轨动力学模型。根据Newton动力学定律得到NES的振动抑制方程,引入Jiles-Atherton模型求得GMM的能量采集表达式。将NES-GMM耦合于航天器的两自由端,利用Galerkin法对整体结构进行离散化,采用Runge-Kutta法进行数值仿真。结果表明NES对航天器的振动抑制效果十分显著,同时GMM能够采集NES耗散的部分振动能,因此该方案是完全可行的,此外适当调整NES和GMM的结构参数还可以提高工作性能。该研究为振动控制与能量采集技术在航天领域的应用提供了新的思路。This study proposed Nonlinear Energy Sink (NES) for the vibration suppression of large flexible spacecraft in complex environments, and Giant Magnetostrictive Materials (GMM) for harvesting the vibrational energy dissipated by NES to reach the effect of energy saving. Considering the influence of sunlight pressure and thermal shock, the in-orbit dynamic model of large flexible spacecraft was established in the Hamilton system. The NES equations of vibration suppression were obtained according to Newton’s dynamic laws, and introducing Jiles-Atherton model deduced the GMM expressions of energy harvesting. NES-GMMs were coupled to the both free ends of spacecraft, which was discretized by Galerkin method, and Runge-Kutta method was used for numerical simulations. The results demonstrated that the effect of NES on the vibration suppression of spacecraft is greatly significant. Meanwhile, GMM can harvest parts of the energy dissipated by NES. Therefore, the proposed method is completely feasible. Moreover, properly adjusting the structural parameters of NES and GMM can also improve the working performance. This study provides a new idea for the application of the technologies of vibration control and energy harvesting in the aerospace field.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.118