检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《图像与信号处理》2021年第3期127-134,共8页Journal of Image and Signal Processing
摘 要:针对主流图像压缩方法色彩深度冗余、无法针对特定场景加入标签以优化压缩质量等问题,本文提出了一种基于半监督模糊聚类(SFCM)的图像压缩方法,相比传统的图像压缩算法,该方法能通过引入模糊标签信息以提高特定应用场景下图像压缩的质量,即对特定区域进行标记以达到更好的压缩效果,从而使得图像压缩在更多不同应用场景保留更丰富的信息。本文实验选取传统的Lena图和COVID-19CT图像,实验结果显示此改进的图像压缩方法相比JPEG、K-Means等方法压缩得到的图像具有更好的信噪比。To solve the problems of image compression methods such as color redundancy and the inability to add label for specific scenes to gain compression quality, this paper proposes an image compression method based on semi-supervised fuzzy clustering (SFCM). Compared with traditional image compression algorithms, this method can improve the quality of image compression in specific scenarios by introducing fuzzy label, marking specific areas to achieve better compression effects, so that image compression retains more details in specific scenarios. The experiments using Lena images and COVID-19 CT images show that this improved image compression method has a better SNR than traditional methods such as JPEG and K-Means.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49