基于多型卷积混合的高光谱非烟物质检测方法  

Multi-Convolution Fusion Based Hyperspectral Non-Tobacco-Leaf Materials Detection Method

在线阅读下载全文

作  者:黄振军 陈晋 谭格 符再德 刘波兰 陈实 许文武 刘承钧 

机构地区:[1]湖南中烟工业有限责任公司,湖南 长沙 [2]南京理工大学计算机科学与工程学院,江苏 南京 [3]湘西鹤盛原烟发展有限责任公司,湖南 长沙 [4]浏阳天福打叶复烤有限责任公司,湖南 长沙 [5]贵州中烟工业有限责任公司毕节卷烟厂,贵州 毕节 [6]南京焦耳科技有限责任公司,江苏 南京

出  处:《图像与信号处理》2024年第1期76-91,共16页Journal of Image and Signal Processing

摘  要:有效减少烟叶中的非烟物质,特别是减少在加工过程不慎混入的次生非烟物质一直是烟草工业中的挑战性问题。本文提出了一种基于MCFnet (Multiple Convolution Fusion U-NET)模型的高光谱非烟物质检测方法。它通过在U-NET模型的下采样段、中间段和上采样段分别使用中心差分卷积残差模块,快速傅立叶卷积残差模块和常规卷积层的特定混合,实现高质量的非烟杂物分割结果,完成非烟物质的定位与类型识别。模型的训练使用加权交叉熵和Dice损失函数的组合以保证模型经充分训练后能得到较好的性能。测试结果表明:对面积不小于10 mm × 10 mm的8类典型非烟杂物的检测,虚警率为1.12%,漏检率为0.45%,对不考虑杂物类别,即把所有非烟杂物作为一类,且包含了部分训练集中未出现的杂物类别的检测,虚警率为3%,漏检率为2.4%。与现有非烟杂物检测方法比较,性能有显著提升。此外,已在湖南中烟下属复烤厂完成了系统的实际部署与模型性能验证。A challenging problem in tobacco industry is to efficiently decrease non-tobacco-leaf materials and especially the secondary produced ones during tobacco production. In this work, we present a non-tobacco-leaf materials detection method by using hyper-spectral images and the proposed Multiple Convolution Fusion U-NET. The method integrates center differential convoltion residule modual, fast Fourier transformation convolution residule modual and standard convolution into the U-NET model and respectively deploys each of them to the downsampling stage, center stage and upsampling stage of U-NET. To this end, the quality of impurity segmentation can be guaranteed, which further achieves accurate localiation and recogtion. We combine weighted cross entropy loss and Dice loss to train our model as we find it effectively and efficiently for sufficient training. The overall method achieved a false-alarm rate of 1.12% and a missed-detection rate of 0.45% for eight typical non-tobacco materials with the size less than 10 mm × 10 mm. When test in the case of not considering the types of non-tobacco materials, and a number of new non-tobacco materials being involved, the proposed method achieved 3% false-alarm rate and 2.4% missed-detection rate. A significant improvement is also found when compared with existing non-tobacco-leaf materials detection method. Moreover, system deployment and model performance validation have been finished in a tobacco factory of Chinese Tobacco Industry Hunan Co. Ltd.

关 键 词:高光谱 非烟杂物检测 多型卷积混合 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象