检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《图像与信号处理》2024年第2期130-137,共8页Journal of Image and Signal Processing
摘 要:及时、准确的进行人流监控及预警是公共安全管理的迫切需求,使用基于计算机视觉的人群计数方法是满足该需求的主要方法之一。针对现有计数模型对人员前景特征和背景特征的关联不够的问题,设计基于双分支自注意力机制的密集人群计数算法。在视觉主干网络之后使用双分支自注意力模块,以促使网络关注有效的人员区域,提升主干网络的特征精炼能力。在Shanghai Tech PART B和UCF-QNRF数据集上进行大量的实验,消融实验的结果证明所提出的模块提升了人群计数的准确性。此外,实验结果表明所提出方法获得比其他经典方法更好的实验结果。The urgent need for public safety management is timely and accurate crowd monitoring and early warning. The use of crowd counting methods based on computer vision is one of the main methods to meet this need. To tackle the problem that existing counting models do not adequately correlate people’s foreground features and background features, a dense crowd counting algorithm based on a dual-branch self-attention mechanism is designed. A dual-branch self-attention module is used after the visual backbone network to prompt the network to focus on effective person areas and improve the feature refining capabilities of the backbone network. A large number of experiments were conducted on Shanghai Tech PART B and UCF-QNRF data sets, and the results of ablation experiments proved that the proposed modules improved the accuracy of crowd counting. Furthermore, experimental results show that the proposed method obtains better experimental results than other classical methods.
关 键 词:人群计数 公共安全管理 双分支自注意力 特征精炼
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.180.219