检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡殿刚 马寅 庞晓东 吴锋 牛甄 李灏 姬艳秋 冯文韬
机构地区:[1]国网甘肃省电力公司,甘肃 兰州
出 处:《图像与信号处理》2025年第1期45-61,共17页Journal of Image and Signal Processing
基 金:本文由国网甘肃省电力公司科技项目“基于长周期运行的双边现货市场全链条智能技术支持及运维关键技术研究及应用”(522722240008)资助。
摘 要:文章主要探讨了一种将卷积神经网络、长短时记忆网络以及注意力机制相结合的方法在新能源发电量预测中的应用及其有效性。随着新能源发电量受外部环境影响而表现出较大波动性和复杂性,传统预测模型难以全面捕捉其中的复杂模式和长期依赖性。因此,文章提出了一个集成多种深度学习方法的组合模型(CNN-LSTM-Attention模型),该模型首先通过卷积层提取数据中的局部特征,随后利用长短时记忆网络建模时间序列的长期依赖关系,最后通过注意力机制增强对重要信息的关注度。实验选取了2024年1月1日至6月30日期间的甘肃省风力发电和水力发电数据,进行了特征提取和模型训练。结果显示,相较于单独使用卷积神经网络或长短时记忆网络,结合了注意力机制的组合模型在多个评估指标上均表现出更高的预测准确性和更好的拟合效果。此外,还引入了孤立森林算法对预测误差进行异常值检测,并结合风险等级进行了详细的分类分析,进一步验证了该模型在实际应用中的有效性。本研究为新能源发电系统的预测和管理提供了一种新思路和方法,有助于提高系统运行的可靠性和安全性。This paper mainly discusses the application and effectiveness of a method combining convolutional neural networks, long short-term memory networks, and attention mechanisms in new energy power generation predictions. As new energy generation is affected by the external environment and shows great volatility and complexity, it is difficult to fully capture complex patterns and long-term dependencies using traditional forecasting models. Therefore, this paper proposes a combined model integrating multiple deep learning methods (CNN-LSTM-Attention model), which firstly extracts local features from the data through convolutional layers, then models the long-term dependencies of time series by long short-term memory networks and finally enhances the focu
关 键 词:新能源发电预测 卷积神经网络–长短时记忆网络–注意力机制(CNN-LSTM-Attention) 异常值检测 孤立森林算法 风险等级分析 运维管理
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.75.131