一种基于集成学习的干扰频点检测方法  被引量:1

A Detection Method of Jamming Frequency Based on Ensemble Learning

在线阅读下载全文

作  者:朱吉利 范振军 

机构地区:[1]中国电子科技集团公司第十研究所,四川 成都 [2]成都天奥集团有限公司,四川 成都

出  处:《图像与信号处理》2025年第1期100-107,共8页Journal of Image and Signal Processing

摘  要:针对传统干扰频点检测方法所存在的精度不够高、易受噪声干扰、实时性较差问题,提出了一种基于集成学习的干扰频点检测方法。首先,对仿真数据进行归一化、类别标注等处理并生成3种不同规模的数据集;然后,构建多个基于XGBoost的频点干扰二分类模型;最后,通过并联所构建的二分类模型对通信帧数据进行频点干扰识别以得到所有被干扰的频点。仿真实验表明,基于并联XGBoost模型的干扰频点检测在仿真数据测试集上的精确率达96.8%,平均推理时间小于5 ms,验证了所提方法的高效性。Aiming at the problems of low precision, easily disturbed by noise, and poor real-time performance of traditional jamming frequency detection methods, a new method of jamming frequency detection based on ensemble learning was proposed. Firstly, the simulation data were processed by normalization, category labeling, etc., and three datasets of different sizes were generated. Then, multiple binary classification models based on XGBoost are constructed for a single frequency. Finally, the binary classification model constructed in parallel is used to identify the frequency jamming of communication frame data to obtain all the jamming frequencies. Simulation experimental results show that the proposed method has an average accuracy of more than 96% and an average inference time of less than 5 ms on the simulation data set, which verifies the high efficiency of the proposed method.

关 键 词:集成学习 干扰频点检测 XGBoost 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象