检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广东工业大学自动化学院,广东 广州
出 处:《机械工程与技术》2024年第2期107-112,共6页Mechanical Engineering and Technology
摘 要:轴承故障检测对旋转机械的维护至关重要。尽管已有的故障诊断方法取得了长足的进步,但仍然面临着一些挑战,如缺乏足够的故障数据用于训练,对复杂的分布式数据的有效性不高,对早期故障的敏感性低,以及噪声和离群值的干扰。因此,本文提出了一种基于样本熵和ROC分析的故障检测方法,通过提取振动信号的样本熵指标,然后使用ROC分析对其进行检测。实验结果表明,本文所提方法能够以较高的准确率检测轴测故障。Bearing fault detection is crucial for the maintenance of rotating machinery. Although existing fault diagnosis methods have made significant progress, they still face some challenges, such as a lack of sufficient fault data for training, low effectiveness against complex distributed data, low sensitivity to early faults, and interference from noise and outliers. Therefore, this article proposes a fault detection method based on sample entropy and ROC analysis, by extracting the sample entropy index of vibration signals and then using ROC analysis to detect them. The experimental results show that the method proposed in this article can detect axial faults with high accuracy.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.249.124