检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学管理学院,上海
出 处:《建模与仿真》2021年第4期962-972,共11页Modeling and Simulation
摘 要:以互联网预约式叫车服务为背景,针对出租车运营中司乘匹配率低、乘客等车时间长和车辆空驶距离长的问题,通过类比万有引力模型,提出了空驶出租车巡游路线调度优化的增强学习控制方法。分别以备选目的地等车乘客数和当前位置空驶出租车数为对应位置的“质量”,而以两地间最短路径长度为两点间“距离”,定义两点间“引力”。通过引力大小,决策空驶车辆的目的地。通过引入增强学习理论,实现空驶出租车巡游路线决策的时空全局最优性,从而避免仅凭当前引力值大小决策路线的短视性。数值算例分析表明:新的调度方法不仅可以提高司乘匹配率和总的运营收入,而且可以减少总的空驶距离。In the setting of internet appointing taxi service, by analogizing the universal gravitation model, a control method of optimizing the cruising routes of vacant taxis was proposed to solve the problems of the low matching rate between taxis and passengers, the long average waiting time of passengers and the long travelling distance of vacant taxis. Using the number of waiting passengers as the mass of the corresponding alternative destination, the number of vacant taxis as the mass of current position, and the length of the shortest path between these two positions as their distance, the gravitation between these two positions can be defined. The next destination of a vacant taxi can be determined using the defined gravitation. By introducing the reinforcement learning theory, the decision of choosing the routes of vacant taxis possesses the global optimality. The short sight of deter-mining the routes only by the size of gravitation can also be avoided. The numerical example shows that the new taxi dispatching method can not only increase the matching rate between taxis and passengers and the total operation income, but also decrease the total travelling distance of vacant taxis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.88