检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:花傲阳
机构地区:[1]上海理工大学机械工程学院,上海
出 处:《建模与仿真》2022年第4期1031-1041,共11页Modeling and Simulation
摘 要:针对工业机器人传统示教方法示教效率低、操作难度大的问题,提出了一种演示示教算法,通过人对目标轨迹的多次演示生成形状复杂且位置精确的示教轨迹。将轨迹中运动状态发生较大变化的点定义为关键点,使用改进的多尺度曲率积算法和连续隐半马尔可夫模型获取不同示教轨迹特征一致的公共关键点。以各个公共关键点簇的中心点作为示教轨迹分割点,将形状复杂、不易拟合的轨迹分割成多条结构简单的子轨迹,利用最小二乘B样条分段拟合曲线以形成最终的示教轨迹。通过实验证明该算法具有良好的示教精度及易用性。Aiming at the problems of low teaching efficiency and difficult operation in the traditional teaching method of industrial robots, a demonstration teaching algorithm is proposed, which generates a teaching trajectory with complex shape and accurate position through multiple demonstrations of the target trajectory by humans. The points in the trajectory with large changes in motion state are defined as key points, and the improved multi-scale curvature product algorithm and continuous hidden semi-Markov model are used to obtain common key points with consistent characteristics in different taught trajectories. Taking the center point of each common key point cluster as the teaching trajectory segmentation point, the complex-shaped and difficult-to-fit trajectory is divided into simple-shaped sub-trajectories, and the least squares B-spline is used to segmentally fit the curve to form the final teaching trajectory. Experiments show that the algorithm has good teaching accuracy and ease of use.
关 键 词:机械臂轨迹 演示示教 关键点提取 连续隐半马尔可夫模型
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49