检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学机械工程学院,上海
出 处:《建模与仿真》2023年第2期1400-1414,共15页Modeling and Simulation
摘 要:本文建立了多因素影响下对草原放牧策略的影响模型,给出了预测模型,描述和计算未来的发展趋势及结果。建立不同放牧策略对土壤物理性质、植被生物量,以及对土壤成分影响的数学模型,并从土壤湿度,降雨量,土壤蒸发量出发,结合决策树分析模型,建立三者之间的关系。首先,通过单因素方差分析,以及多重比较法,得到不同因素之间的影响值,由此得到了不同放牧策略对土壤物理性质和植被生物量影响模型。然后,基于ADF检验表,采用时间序列分析模型建立预测模型,检测样地不同放牧强度下的土壤成分。最后,采用决策树对数据进行定量分析,在SPSSPRO中设置参数,对不同月份不同土壤湿度进行预测分析。In this paper, a multi-factor impact model on grassland grazing strategy is established, and a pre-diction model is given to describe and calculate the future development trend and results. A mathematical model of the effects of different grazing strategies on soil physical properties, vegeta-tion biomass and soil components was established, and the decision tree analysis model was com-bined with the soil moisture, rainfall and soil evaporation, establish a relationship between the three. First, the effects of different grazing strategies on soil physical properties and vegetation bi-omass were obtained by single-factor analysis of variance and multiple comparison. Then, based on the ADF checklist, time series analysis model was used to establish the prediction model, and the soil composition of the plots under different grazing intensities was detected. Finally, decision trees were used to Quantitative analysis the data, the parameters were set in SPSSPRO to predict differ-ent soil moisture in different months.
关 键 词:决策树 土壤成分 单因素方差分析 ADF检验 土壤湿度 土壤物理性质 土壤蒸发量 预测模型
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7