检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学机械工程学院,上海
出 处:《建模与仿真》2023年第3期2586-2596,共11页Modeling and Simulation
摘 要:针对当今临床医学对高精度连续无创血压监测方法的需求,本文提出一种基于光电容积脉搏波(PPG)信号与心电图(ECG)信号的多传感器信号特征提取及融合的深度神经网络血压预测模型。通过对经过预处理的信号以基于多跳问答推理机制设计的多跳GRU-Attention网络进行特征融合来实现对动脉血压的预测。预测结果的各项评估指标与Bland-Altman一致性分析表明,该模型的预测效果良好,对临床医学上连续无创血压预测技术的发展具有积极意义。In response to the demand for high-precision continuous non-invasive blood pressure monitoring methods in today’s clinical medicine, this paper proposes a deep neural network blood pressure prediction model based on multi-sensor signal feature extraction and fusion of photoplethysmog-raphy (PPG) signals and electrocardiogram (ECG) signals. The prediction of arterial blood pressure is realized by performing feature fusion on the preprocessed signal with a multi-hop GRU- Attention network designed based on a multi-hop question answering reasoning mechanism. The Bland-Altman consistency analysis of the evaluation indicators of the prediction results shows that the prediction effect of the model is good, and it has positive significance for the development of continuous non-invasive blood pressure prediction technology in clinical medicine.
关 键 词:特征融合 无创血压监测 深度神经网络 动脉血压 推理机制 一致性分析 血压预测 临床医学
分 类 号:R54[医药卫生—心血管疾病]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.209.242