检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学管理学院,上海
出 处:《建模与仿真》2023年第5期4696-4706,共11页Modeling and Simulation
摘 要:为了使有人驾驶车辆充分利用无人车自主移位的特征,本文引入泊位机器人(PVR)辅助车辆变换泊位以提高泊位利用率,降低系统成本以及减少事故发生的概率。针对减少PVR辅助车辆变换泊位而产生的移位次数和距离,建立了单停车场或特定停车区域下的满足可接受停车需求的预约式共享停车供需匹配模型,该问题可视为特殊的二次分配模型。考虑到本模型具有NP-hard特征,本文设计了对应的鲸鱼优化算法,数值分析不仅验证了该模型的合理性和算法的高效,而且与随机的匹配的初始结果相比,该算法优化后的成本结果减少了20%。从解决城市“停车难”的立场看,本研究为以有人驾驶车辆为对象的共享停车研究实践提供了强有力的思路和方法。To fully leverage the self-shifting capability of autonomous vehicles when operated by human driv-ers, this study introduces Parking Vehicle Robots (PVRs) to assist in optimizing parking space allo-cation. The aim is to enhance parking space utilization, reduce overall system costs, and mitigate the occurrence of accidents. To address the challenge of minimizing the frequency and distance of PVR-assisted vehicle relocations, a reservation-based shared parking supply-demand matching model is developed. This model is applicable to single parking lots or specific parking zones, cater-ing to the acceptable parking demands. The problem at hand is akin to a specialized quadratic as-signment problem. Recognizing the inherent complexity of this model (NP-hard), an innovative Whale Optimization Algorithm (WOA) is crafted. Through comprehensive numerical analysis, not only is the model's rationality established and the algorithm's efficiency demonstrated, but the re-sults also indicate a remarkable 20% reduction in optimized cost when compared to initial out-comes from random matching. From the standpoint of addressing the prevalent urban parking challenge, this research contributes a robust framework and approach for practical studies in shared parking, particularly focused on human-driven vehicles.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7