基于WPD与功率谱熵的铣削颤振仿真识别  

Simulation Identification of Milling Chatter Based on WPD and Power Spectrum Entropy

在线阅读下载全文

作  者:顾于青 邱彬彬 李卫东 

机构地区:[1]上海理工大学机械工程学院,上海

出  处:《建模与仿真》2024年第1期498-505,共8页Modeling and Simulation

摘  要:颤振是高速铣削加工过程中的一种不稳定振动,它会导致工件表面质量差、刀具磨损严重、噪声严重。为了避免铣削颤振带来的这些负面影响,需要对铣削颤振进行早期检测。本文提出了一种基于小波包分解和功率谱熵的轻微颤振识别方法。首先,对加速度传感器采集到的原始振动信号进行小波包分解,选取含有丰富颤振信息的小波包进行重构仿真。然后,计算重构仿真信号的功率谱熵作为识别指标。实验结果表明,该方法能够有效地检测出颤振。Chatter is a kind of unstable vibration during high-speed milling machining, which leads to the poor surface quality of the workpiece, serious tool wear and noise. In order to avoid these negative effects of milling chatter, early detection of milling chatter is needed. In this paper, a slight chatter identi-fication method based on wavelet packet decomposition (WPD) and power spectrum entropy is proposed. Firstly, wavelet packet decomposition is performed on the original vibration signals col-lected by the acceleration sensor, and the wavelet packets containing rich chattering information are selected for reconstruction simulation. Then, the power spectral entropy of the reconstructed simulated signals is calculated as the identification index. The experimental results show that the method can effectively detect the chattering vibration.

关 键 词:小波包分解 功率谱熵 铣削 颤振 

分 类 号:TG5[金属学及工艺—金属切削加工及机床]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象