突发事件网络舆情传播及情感分析——以3.21东航MU5375坠机事件为例  

Network Public Opinion Dissemination and Emotional Analysis of Sudden Events—Taking the 3.21 China Eastern Airlines MU5375 Crash as an Example

在线阅读下载全文

作  者:刘梦馨 李跃文[1] 

机构地区:[1]上海工程技术大学管理学院,上海

出  处:《运筹与模糊学》2023年第4期3314-3322,共9页Operations Research and Fuzziology

摘  要:随着互联网的迅速发展,网民规模的逐渐扩大,非常规突发事件对公众的影响不容小觑。本文以东航MU5375坠机事件为例,通过八爪鱼爬虫技术进行一定期间内有关该事件的数据挖掘,基于复杂社会网络、传播模型理论和语义网络图等对舆情扩散进行关键用户识别、发展趋势分析和文本情感分析。由此得出结论:以央视新闻和“来去之间”大V用户为代表的关键用户成为事件传播的意见领袖,且该事件传播和演化大体符合经典的SEIR传播机制;同时发现社会公众对于东航MU5375坠机事件保持负面态度的居多,但呈现出正向态度的公众是多于中立态度的。针对此本文从平台管控、媒体引导和监管干预三个方面最终给出非常规突发事件网络舆情的相应干预措施建议,从而更好地实现微博等社交平台信息良性循环。With the rapid development of the Internet and the gradual expansion of the scale of netizens, the impact of unconventional emergencies on the public cannot be underestimated. Taking the China Eastern Airlines MU5375 crash as an example, this paper conducts data mining on the event within a certain period through octopus crawler technology, and conducts key user identification, development trend analysis and sentiment analysis on public opinion diffusion based on complex social networks, communication model theory and Semantic network maps. It is concluded that the key users represented by CCTV News and “between come and go” big V users become the Opinion leader of event communication, and the event communication and evolution generally conform to the classic SEIR communication mechanism;At the same time, it was found that the majority of the public held a negative attitude towards the China Eastern Airlines MU5375 crash, but more showed a positive attitude than a neutral attitude. In response to this, this article provides corresponding intervention measures and suggestions for unconventional unexpected online public opinion from three aspects: platform control, media guidance, and regulatory intervention, in order to better achieve a virtuous cycle of information on social platforms such as Weibo.

关 键 词:微博用户 Gephi可视化 情感分析 网络舆情 

分 类 号:F56[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象