检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:裴亚蕾 Yalei Pei(Department of Mathematics, Taiyuan Normal University, Taiyuan Shanxi)
机构地区:[1]太原师范学院数学系,山西太原
出 处:《理论数学》2018年第6期604-612,共9页Pure Mathematics
摘 要:多元统计分析中,判别分析和Logistic回归分析都是用来预测和解释一个对象所属类别的分类方法。回归模型用于预测和解释度量变量,而判别分析和Logistic回归分析用来解决被解释变量是非度量变量的情况。被解释变量包含两类时,判别分析和Logistic回归分析都适用;而被解释变量包含两类以上时,只有判别分析适用。但是,只有解释变量满足多元正态性和相等协方差阵假设时,判别分析才适用。而Logistic回归不需要解释变量的一系列的假设,仍可以得到良好的结果。本文分别用判别分析和Logistic回归分析对中小企业的破产模型进行分析,并对比两种分类方法的异同。In multivariate statistical analysis, discriminant analysis and Logistic regression analysis are both used to predict and interpret the classification. Regression models are used to predict and interpret metric variables, while discriminant analysis and Logistic regression analysis are used to solve situations where explanatory variables are non-metric variables. When the explanatory variable contains two types, both discriminant analysis and Logistic regression analysis are applicable;when the explanatory variable contains more than two types, only discriminant analysis is applicable. However, discriminant analysis is only applicable when the explanatory variables satisfy the multivariate normality and the equivalent covariance matrix hypothesis. Logistic regression does not require a series of assumptions about explanatory variables, and good results can still be obtained. In this paper, the bankruptcy model of SMEs (Small and Medium Enterprises) was analyzed by discriminant analysis and Logistic regression analysis respectively, and the differences and similarities between the two classification methods were compared.
关 键 词:判别分析 FISHER判别 LOGISTIC回归 极大似然估计
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200