基于突变策略的自适应骨干粒子群算法  

A Self-Adaptive Bare-Bones Particle Swarm Optimization Algorithm Based on Mutation Strategy

在线阅读下载全文

作  者:张嘉文 舒慧生[1] 阚秀[2] 

机构地区:[1]东华大学理学院,上海 [2]上海工程技术大学电子电气工程学院,上海

出  处:《理论数学》2023年第3期694-711,共18页Pure Mathematics

摘  要:骨干粒子群算法是由标准粒子群算法演变而来的,其在粒子位置更新方面采用了高斯采样策略。针对骨干粒子群算法在解决高维优化问题时存在的易陷入局部最优的问题,文中引入了具有下降趋势的时变因子,提出了一种基于突变策略的带有自适应扰动值的骨干粒子群算法。该算法在高斯分布的均值项中引入两个服从均匀分布的随机数,在高斯分布的标准差中引入了一个自适应扰动值,且给出了突变策略进一步保证粒子收敛到全局最优解。改进后的算法与其他5种粒子群算法在9个经典测试函数上进行仿真实验,结果表明改进的算法在收敛速度和收敛精度方面的综合表现都优于其它算法。The bare-bones particle swarm optimization algorithm is evolved from the standard particle swarm optimization algorithm, which adopts the Gaussian sampling strategy when particles’ position update. To improve the problem of premature convergence when solving the high-dimensional optimization problems, a time-varying factor with downward trend is introduced and a self-adaptive mutation bare-bones particle swarm optimization (AMBPSO) is proposed where the particle would mutate according to adaptive probability when it becomes stagnant after updating with the perturbation strategy in order to jump out of the local optimum. The algorithm introduces two random numbers that obey uniform distribution in the mean term of the Gaussian distribution and an adaptive perturbation value in the standard deviation of the Gaussian distribution, and gives a mutation strategy to further ensure that the particles converge to the global optimum. The proposed algorithm and other five particle swarm optimization algorithms are simulated on nine classical benchmark functions, whose experimental results show that the proposed AMBPSO algo-rithm is more competitive than some existing popular variants of PSO algorithms in terms of con-vergence speed and convergence accuracy.

关 键 词:骨干粒子群算法 自适应扰动 突变策略 时变因子 全局收敛 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象