检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长安大学理学院,陕西 西安
出 处:《理论数学》2023年第7期2142-2154,共13页Pure Mathematics
摘 要:本文研究广义压力下跨音速流动问题在音速曲线附近的解。给定音速曲线和正特征线上的条件,构造了二维等熵Euler方程的超音速解。由于该系统是退化的,在音速曲线上失去双曲性并产生奇点。因此通过引入一组新变量将该问题转化为一个具有显式奇异正则结构的线性系统,利用迭代法建立新系统光滑解的存在唯一性,从而证明了原系统解的存在性。In this paper, we study the solution of transonic flow problems under generalized pressure near the sonic curve. Given the conditions of the sonic curve and the positive characteristic line, the su-personic solution of the two-dimensional isentropic Euler equation is constructed. Since this system is degenerate, it loses hyperbolicity and produces singularities on the sonic curve. Therefore, by introducing a new set of variables, the problem is transformed into a linear system with explicit singular regular structure. The existence and uniqueness of the smooth solution of the new system are established by iterative method, and the existence of the solution of the original system is proved.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63