检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《理论数学》2024年第1期253-260,共8页Pure Mathematics
摘 要:本文研究一类具有避难所的 Holling-Tanner型捕食者-食饵模型。 首先分析了常微分系统下平衡 点的稳定性,然后通过分析扩散模型平衡点的特征方程,讨论正平衡点的局部稳定性以及Hopf分 支存在的条件。 结果表明:避难所会导致Hopf分支产生,产生空间齐次周期解,扩散的加入会创 造新的Hopf分支点,产生空间非齐次周期解。这说明设立适当的食饵避难所有助于物种共存。In this paper, a Holling-Tanner predator-prey model with diffusion and prey refugeis considered. Firstly, the stability of the equilibrium points under the ordinary differential system is analyzed. Secondly, the local stability of the positive equilibriumpoint and the conditions for the existence of the Hopf branch are discussed by analyzing the characteristic equations of the equilibrium point of the diffusion model.The results show that the refuge will lead to the Hopf bifurcation and produce thespatial homogeneous periodic solution, and the addition of diffusion will create newHopf bifurcation points and produce the spatial non-homogeneous periodic solution.This indicates that the establishment of appropriate prey refuge will be conducive tothe coexistence of species.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.23.128.245