检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西华师范大学数学与信息学院,四川 南充 [2]西华师范大学公共数学学院,四川 南充
出 处:《理论数学》2024年第4期342-354,共13页Pure Mathematics
摘 要:本文运用重心Jacobi插值配置法求解一类Fredholm积分–微分方程。首先通过取消重心Gegenbauer插值中参数相等的条件,得到重心Gegenbauer插值的一般形式——重心Jacobi插值,并表明重心Jacobi插值等价于插值节点为移位Gauss-Jacobi节点的Jacobi插值。然后基于配置法,应用重心Jacobi插值构造一类带有初值条件的Fredholm积分–微分方程的数值算法。误差估计表明,在合适的条件下,该算法是收敛的。最后,数值算例验证算法的有效性。In this paper, the barycentric Jacobi interpolation collocation method is used to solve a kind of Fredholm Integral-Differential equation. Firstly, the general form of barycentric Gegenbauer interpolation, barycentric Jacobi interpolation, is obtained by canceling the condition that the parameters in barycentric Gegenbauer interpolation are equal, and it is shown that the barycentric Jacobi interpolation is equivalent to the Jacobi interpolation whose interpolation nodes are shifted Gauss-Jacobi nodes. Then based on the collocation method, the numerical algorithm for a kind of Fredholm Integral-Differential equation with initial value conditions is constructed by barycentric Jacobi interpolation. The result of error estimates show that the algorithm is convergent under suitable conditions. Finally, the effectiveness of the algorithm is verified by a numerical example.
关 键 词:重心Jacobi插值配置法 Fredholm积分–微分方程 误差估计
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38