检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张龙
出 处:《理论数学》2024年第7期53-60,共8页Pure Mathematics
摘 要:在本文中,我们关注高阶数值导数问题,该问题是不适定的。为了解决这一反问题,我们提出了分数阶Tikhonov正则化方法,用于从一维噪声数据中计算高阶数值导数。本文先用Fourier变换求出问题的精确解,再用分数阶Tikhonov正则化方法构造出问题的正则化解,最后讨论了先验正则化参数选择规则下精确解与正则化近似解的误差估计。In this paper, we focus on the higher-order numerical derivative problem, which is ill-determined. To solve this inverse problem, we propose a fractional Tikhonov regularization method for calculating higher-order numerical derivatives from one-dimensional noisy data. In this paper, the Fourier transform is used first to write the exact solution of the problem, and then the regularization solution of the problem is constructed by fractional Tikhonov regularization method. Finally, the error estimation of the exact solution and regularization approximate solution under the prior regularization parameter selection rules is discussed.
关 键 词:数值微分 反问题 分数阶Tikhonov正则化 误差估计
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.125.232