检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]苏州科技大学,数理学院,江苏 苏州
出 处:《统计学与应用》2020年第4期603-614,共12页Statistical and Application
摘 要:本文根据2010~2018年包括苏州市在内的江浙24个地市的面板数据进行社会保障水平区域差异和影响因素的实证分析。本文通过主成分分析法与聚类分析法交叉验证,得出各地市社会保障水平差异情况,并将其分为4类。从分类中选出最具代表性的地区进行灰色关联分析得出地区社会保障水平的主要影响因素包括地区生产总值、参加各类社会保险人数、人均可支配收入等,且具有明显的区域差异性,其中苏州市社会保障水平与参加养老保险人数关系最为密切。最后通过ARMA模型对苏州市的社会保障发展进行预测。Based on the panel data of 24 cities in Jiangsu and Zhejiang from 2010 to 2018, including Suzhou, this paper makes an empirical analysis of regional differences in social security level and influencing factors. Through the cross validation of principal component analysis method and cluster analysis method, this paper obtains the difference of social security level in each city and divides it into four categories. According to the grey correlation analysis, the most representative regions were selected from the classification, and the main influencing factors of the social security level of the region included the GDP, the number of people participating in various social insurance, per capita disposable income, etc., and there were significant regional differences, among which the social security level of Suzhou had the most close relationship with the number of people participating in the endowment insurance. Finally, the ARMA model is used to predict the development of social security in Suzhou.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.41.47