检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《统计学与应用》2020年第6期958-963,共6页Statistical and Application
摘 要:针对移动互联网用户情绪预测问题,收集了40名被试观看偏好以及不偏好视频的主观情绪以及实时心率波动的数据。独立样本T检验结果表明,不同情绪下心率变化幅度存在显著差异,验证了心率在鉴别用户情绪的可行性。在此基础上,提出采用机器学习构建面向移动互联网用户的情绪预测模型。所构建的二重SVM模型对三类情绪(开心、中性和难过)的鉴别成功率均在75%以上。研究结果还表明实时心率数据能够较好地反映出移动互联网用户的情绪变化。To solve the problem of mood prediction of mobile Internet users, the subjective mood and real-time heart rate fluctuation data of 40 subjects were collected. Independent sample t-test results show that there are significant differences in the range of heart rate changes under different emotions, which verifies the feasibility of heart rate in identifying users’ emotions. On the basis of this, the paper proposes to use machine learning to build an emotion prediction model for mobile Internet users. The success rate of the three kinds of emotions (happy, neutral and sad) was more than 75%. The results also show that real-time heart rate data can better reflect the emotional changes of mobile Internet users.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3