检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李会会
机构地区:[1]上海对外经贸大学,上海
出 处:《统计学与应用》2021年第3期365-372,共8页Statistical and Application
摘 要:本文基于最小二乘的主成分回归(PCR)方法对邮件进行分类,进一步使用偏最小二乘回归(PLS)对垃圾邮件识别分类。将PLS与PCR得到的分类准确度进行比较分析,考察PLS分类准确度百分比随分类截点变化的趋势,并得出两种方法下不同k值(主成分个数)对应的ROC曲线图,分析PLS与PCR方法识别和分类垃圾邮件的准确度和稳定性。This paper classifies emails based on the principal component regression (PCR) method of least squares, and further uses partial least squares regression (PLS) to identify and classify spam emails. The classification accuracy obtained by PLS and PCR was compared and analyzed. Then the trend of the percentage of classification accuracy of PLS with the classification cut-off point is examined, and the ROC curve corresponding to different k values (number of principal components) under the two methods is obtained. Finally, this article analyzes the accuracy and stability of PLS and PCR methods to identify and classify spam.
关 键 词:偏最小二乘回归 LGK双对角化 迭代算法 分类算法
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38