检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]燕山大学理学院,河北 秦皇岛
出 处:《统计学与应用》2024年第2期430-436,共7页Statistical and Application
摘 要:根据世界知识产权组织统计的数据,我国的专利申请数量多年来名列前茅,专利授权数量也每年都在增长,因此学术界及社会各界越来越关注专利价值的研究。传统的专利价值评价方法大都是采用定性和定量结合的决策方法,比如:层次分析法、综合评价法等,已经不能满足当今大规模大体量数据的分析需求。利用大数据环境下的机器学习方法不但可以降低人力成本,还可以提高分类的准确率和效率。本文提出一种基于粒子群优化算法–自组织映射网络(PSO-SOM)的专利价值分类模型,依据专利价值指标,从incoPat专利数据库选取了5000条专利数据进行实证研究。通过PSO-SOM聚类得到了有效的专利价值标签,利用随机森林算法对初始专利价值进行指标重要性排序,并逐个依次将指标引入朴素贝叶斯模型中进行分类,能够有效提高朴素贝叶斯分类模型的准确率和效率。According to statistics from the World Intellectual Property Organization, the number of patent applications in China has been among the top for many years, and the number of patent authorizations is also increasing every year. Therefore, the academic community and various sectors of society are increasingly concerned about the study of patent value. The traditional patent value evaluation methods mostly use a combination of qualitative and quantitative decision-making methods, such as the Analytic Hierarchy Process, Comprehensive Evaluation Method, and so on, which can no longer meet the analysis needs of large-scale and large-volume data today. The use of machine learning methods in the big data environment can not only reduce labor costs but also improve classification accuracy and efficiency. This article proposes a patent value classification model based on particle swarm optimization and self-organizing mapping network (PSO-SOM). Based on patent value indicators, 5000 pieces of patent data were selected from the incoPat patent database for empirical research. Effective patent value labels were obtained through PSO-SOM clustering, and the initial patent value was ranked in importance using the random forest algorithm. The indicators were introduced into the Naive Bayes model for classification one by one, which can effectively improve the accuracy and efficiency of the Naive Bayes classification model.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7