检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国家电网公司,北京 [2]北京理工大学,北京 [3]沈阳工程学院,辽宁沈阳
出 处:《可持续能源》2015年第3期17-23,共7页Sustainable Energy
摘 要:为了充分利用历史风速数据所蕴含的信息,本文根据风速和风电功率的日相似性提出基于聚类分析的短期功率预测方法,通过对原样本数据进行预处理,选取与预测日NWP特征参数相似的历史日数据,以此作为建立模型的训练样本,将气象部门提供预测日的NWP信息作为预测日的特征参数,计算特征参数间的欧式距离,以此作为相似性度量的依据,最后利用聚类后的相似样本建立预测模型,以NWP数据为输入参数,实际风电功率为目标值,经过训练后得到聚类风电功率短期预测模型。经实际风电场测试,预测精度明显提高。In order to make full use of information contained from historical wind data, this paper proposed a short-term power prediction method based on clustering analysis according to the daily similarity property of wind speed and wind power. By the preprocessing of the original sample data, when calculating the Euclidean distance among the characteristic parameters, the history data which are similar to the NWP characteristic parameter of the prediction day are used as the training sample;the NWP information provided by the meteorological department is used as the characteristic parameter of the prediction day. This Euclidean distance is used to be the basis of the similarity measure. Finally, this paper uses the similar samples after clustering to establish the short-term prediction model which is using the NWP data as the input parameter, using the actual wind power generation as the target data. Testing by the actual wind farms, the prediction precision is improved obviously.
关 键 词:短期功率预测 聚类分析 K均值聚类法 日相似性 数值天气预报(NWP)
分 类 号:TM6[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117