Design and Optimized Control of a Photovoltaic/Battery-Powered Cathodic Protection System  

Design and Optimized Control of a Photovoltaic/Battery-Powered Cathodic Protection System

在线阅读下载全文

作  者:Amal A. Hassan Hanaa M. Farghally Abd El-Shafy A. Nafeh Ninet M. Ahmed Faten H. Fahmy Amal A. Hassan;Hanaa M. Farghally;Abd El-Shafy A. Nafeh;Ninet M. Ahmed;Faten H. Fahmy(Electronics Research Institute, Cairo, Egypt)

机构地区:[1]Electronics Research Institute, Cairo, Egypt

出  处:《Energy and Power Engineering》2024年第12期373-393,共21页能源与动力工程(英文)

摘  要:Metallic pipeline corrosion poses a significant challenge in the petrochemical industry. In this study, the design and control of a stand-alone photovoltaic (PV)-powered cathodic protection (CP) system based on the impressed current method were investigated. The proposed CP system was applied to a 250 km long steel-buried pipeline in the Sharm El-Sheikh region of Egypt. The system design involved the numerical modeling of the anode bed for the impressed current CP (ICCP) system and the sizing of the DC power source, including the PV array and battery bank. The system was designed and controlled to deliver a constant and continuous anode current to protect the underground pipeline from corrosion during daylight and nighttime. A maximum power point tracking (MPPT) algorithm based on the fractional open-circuit voltage (FOCV) technique was implemented to maximize power extraction from the PV array. Additionally, a proportional-integral (PI) controller was optimized and employed to achieve MPPT, while another PI controller managed the anode current of the CP system. Safe charging and discharging of the system’s battery are ensured via an ON-OFF controller. The parameters of the PI controllers were optimized using the particle swarm optimization (PSO) technique. Simulation results demonstrated that the proposed CP system achieved the required protection objectives successfully.Metallic pipeline corrosion poses a significant challenge in the petrochemical industry. In this study, the design and control of a stand-alone photovoltaic (PV)-powered cathodic protection (CP) system based on the impressed current method were investigated. The proposed CP system was applied to a 250 km long steel-buried pipeline in the Sharm El-Sheikh region of Egypt. The system design involved the numerical modeling of the anode bed for the impressed current CP (ICCP) system and the sizing of the DC power source, including the PV array and battery bank. The system was designed and controlled to deliver a constant and continuous anode current to protect the underground pipeline from corrosion during daylight and nighttime. A maximum power point tracking (MPPT) algorithm based on the fractional open-circuit voltage (FOCV) technique was implemented to maximize power extraction from the PV array. Additionally, a proportional-integral (PI) controller was optimized and employed to achieve MPPT, while another PI controller managed the anode current of the CP system. Safe charging and discharging of the system’s battery are ensured via an ON-OFF controller. The parameters of the PI controllers were optimized using the particle swarm optimization (PSO) technique. Simulation results demonstrated that the proposed CP system achieved the required protection objectives successfully.

关 键 词:PHOTOVOLTAIC Cathodic Protection MPPT PI Controller PSO Optimization 

分 类 号:TG1[金属学及工艺—金属学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象