A Restricted, Adaptive Threshold Segmentation Approach for Processing High-Speed Image Sequences of the Glottis  

A Restricted, Adaptive Threshold Segmentation Approach for Processing High-Speed Image Sequences of the Glottis

在线阅读下载全文

作  者:Mathew Blanco Xin Chen Yuling Yan 

机构地区:[1]Department of Bioengineering, Santa Clara University, Santa Clara, USA

出  处:《Engineering(科研)》2013年第10期357-362,共6页工程(英文)(1947-3931)

摘  要:In this paper, we propose a restricted, adaptive threshold approach for the segmentation of images of the glottis acquired from high speed video-endoscopy (HSV). The approach involves first, identifying a region of interest (ROI) that encloses the vocal-fold motion extent for each image frame as estimated by the different image sequences. This procedure is then followed by threshold segmentation restricted within the identified ROI for each image frame of the original image sequences, or referred to as sub-image sequences. The threshold value is adapted for each sub-image frame and determined by respective minimum gray-scale value that typically corresponds to a spatial location within the glottis. The proposed approach is practical and highly efficient for segmenting a vast amount of image frames since simple threshold method is adapted. Results obtained from the segmentation of representative clinical image sequences are presented to verify the proposed method.In this paper, we propose a restricted, adaptive threshold approach for the segmentation of images of the glottis acquired from high speed video-endoscopy (HSV). The approach involves first, identifying a region of interest (ROI) that encloses the vocal-fold motion extent for each image frame as estimated by the different image sequences. This procedure is then followed by threshold segmentation restricted within the identified ROI for each image frame of the original image sequences, or referred to as sub-image sequences. The threshold value is adapted for each sub-image frame and determined by respective minimum gray-scale value that typically corresponds to a spatial location within the glottis. The proposed approach is practical and highly efficient for segmenting a vast amount of image frames since simple threshold method is adapted. Results obtained from the segmentation of representative clinical image sequences are presented to verify the proposed method.

关 键 词:Segmentation GLOTTIS VOCAL FOLD Motion DIFFERENCE Image Adaptive THRESHOLD 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象