检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:David Martínez-Martínez Yedid Erandini Niño-Membrillo José Francisco Solís-Villarreal Oscar Espinoza-Ortega Lizbeth Sandoval-Juárez Francisco Javier Núñez-García David Martínez-Martínez;Yedid Erandini Niño-Membrillo;José Francisco Solís-Villarreal;Oscar Espinoza-Ortega;Lizbeth Sandoval-Juárez;Francisco Javier Núñez-García(Centro Universitario UAEM Valle de Teotihuacn, Universidad Autnoma del Estado de Mxico, Axapusco, Mxico;Centro Universitario UAEM Texcoco, Universidad Autnoma del Estado de Mxico, Texcoco, Mxico)
机构地区:[1]Centro Universitario UAEM Valle de Teotihuacn, Universidad Autnoma del Estado de Mxico, Axapusco, Mxico [2]Centro Universitario UAEM Texcoco, Universidad Autnoma del Estado de Mxico, Texcoco, Mxico
出 处:《Engineering(科研)》2024年第10期353-359,共7页工程(英文)(1947-3931)
摘 要:This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features while maintaining high recognition rates. This experiment achieved 97.5% of individuals classified correctly with two levels of Haar wavelets. This study used twelve-version of RGB and NIR (near infrared) wavelength images per individual. One hundred people were studied;therefore 4,800 instances compose the complete database. A Multilayer Perceptron (MLP) was trained to improve the recognition rate in a k-fold cross-validation test with k = 10. Classification results using MLP neural network were obtained using Weka (open source machine learning software).This document presents a framework for recognizing people by palm vein distribution analysis using cross-correlation based signatures to obtain descriptors. Haar wavelets are useful in reducing the number of features while maintaining high recognition rates. This experiment achieved 97.5% of individuals classified correctly with two levels of Haar wavelets. This study used twelve-version of RGB and NIR (near infrared) wavelength images per individual. One hundred people were studied;therefore 4,800 instances compose the complete database. A Multilayer Perceptron (MLP) was trained to improve the recognition rate in a k-fold cross-validation test with k = 10. Classification results using MLP neural network were obtained using Weka (open source machine learning software).
关 键 词:Palm Vein Recognition CROSS-CORRELATION Haar Wavelets Multilayer Perceptron
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.239.73