机构地区:[1]Department of Civil, Construction and Environmental Engineering, University of Alabama at Birmingham, Birmingham, AL, USA [2]Department of Civil and Environmental Engineering, Florida International University, Miami, FL, USA
出 处:《Journal of Transportation Technologies》2021年第2期196-212,共17页交通科技期刊(英文)
摘 要:The rapid technological developments in the 21</span><sup><span style="font-family:Verdana;">st</span></sup><span style="font-family:Verdana;"> century created new opportunities for shared-use economy applications around the globe. Among other </span><span style="font-family:Verdana;">services, Transportation Network Companies (TNCs) like Uber and Lyft</span><span style="font-family:Verdana;"> emer</span><span style="font-family:Verdana;">ged in the US as a transportation alternative that offered a higher level of</span> <span style="font-family:Verdana;">availability, reliability, and convenience than traditional modes. However,</span> <span style="font-family:Verdana;">TNCs deployment was also blamed for increases in vehicle miles traveled</span><span style="font-family:Verdana;"> (VMT) in large cities that embraced TNC services early on. Concerns about TNC adoption are also magnified by the current controversy in policy and legislation as to the regulation of TNCs. These new realizations create a need to examine the transportation users’ attitudes and perceptions regarding ride-hailing service, after nearly a decade of service in the Unites States market. In doing so, this paper compares and contrasts results from two recently completed studies aiming at creating links between socio-demographic factors and TNC use. The paper describes the methods employed to collect the data and presents findings from the analysis of 790 users’ responses in the Birmingham, AL and Miami Beach, FL markets. The study documents preferences and attitudes toward TNCs and highlights similarities and differences in travel behaviors related to local considerations. Moreover, the study uses the Least Absolute Shrinkage and Selection Operator (Lasso) method to identify predictors for TNC use based on the users’ responses in Birmingham and Miami Beach case studies. Vehicle availability and waiting time emerged as t</span><span style="font-family:Verdana;">he only significant predictors for the Birmingham region whereas vehicl</span>The rapid technological developments in the 21</span><sup><span style="font-family:Verdana;">st</span></sup><span style="font-family:Verdana;"> century created new opportunities for shared-use economy applications around the globe. Among other </span><span style="font-family:Verdana;">services, Transportation Network Companies (TNCs) like Uber and Lyft</span><span style="font-family:Verdana;"> emer</span><span style="font-family:Verdana;">ged in the US as a transportation alternative that offered a higher level of</span> <span style="font-family:Verdana;">availability, reliability, and convenience than traditional modes. However,</span> <span style="font-family:Verdana;">TNCs deployment was also blamed for increases in vehicle miles traveled</span><span style="font-family:Verdana;"> (VMT) in large cities that embraced TNC services early on. Concerns about TNC adoption are also magnified by the current controversy in policy and legislation as to the regulation of TNCs. These new realizations create a need to examine the transportation users’ attitudes and perceptions regarding ride-hailing service, after nearly a decade of service in the Unites States market. In doing so, this paper compares and contrasts results from two recently completed studies aiming at creating links between socio-demographic factors and TNC use. The paper describes the methods employed to collect the data and presents findings from the analysis of 790 users’ responses in the Birmingham, AL and Miami Beach, FL markets. The study documents preferences and attitudes toward TNCs and highlights similarities and differences in travel behaviors related to local considerations. Moreover, the study uses the Least Absolute Shrinkage and Selection Operator (Lasso) method to identify predictors for TNC use based on the users’ responses in Birmingham and Miami Beach case studies. Vehicle availability and waiting time emerged as t</span><span style="font-family:Verdana;">he only significant predictors for the Birmingham region whereas vehicl</span>
关 键 词:Transportation Network Companies (TNC) Ride-Hailing Travel Behavior Mode Choice Survey BIRMINGHAM Miami Beach
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...