Environmental Stress Cracking Resistance of Halloysite Nanoclay-Polyester Nanocomposites  

Environmental Stress Cracking Resistance of Halloysite Nanoclay-Polyester Nanocomposites

在线阅读下载全文

作  者:Mohd Shahneel Saharudin Jiacheng Wei Islam Shyha Fawad Inam 

机构地区:[1]Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, New-castle, UK

出  处:《World Journal of Engineering and Technology》2017年第3期389-403,共15页世界工程和技术(英文)

摘  要:The environmental stress cracking resistance of halloysite nanoclay-polyester nanocomposites was investigated using fracture mechanics approach. The incorporation of halloysite nanoclay was found to improve the environmental stress cracking resistance of the nano-composites. The storage modulus of nano-composites measured by dynamic mechanical analysis increased remarkably as a function of halloysite nanoclay content. At 0.7 wt% nanoclay, the Tg improved from 72°C to 76°C. The fracture toughness increased up to 33% and time to failure improved 155% with the addition of 0.7 wt% of halloysite nanoclay. The maximum microhardness was found 119% higher for the same nano-filler concentration compared to monolithic polyester. The reinforcement with 1 wt% showed lower fracture toughness due to agglomerations of nanoclay which act as flaws. The presence of agglomerates weakened the bond between nano-particles and matrix hence reduces the environmental stress cracking resistance by halloysite nanoclay reinforcement.The environmental stress cracking resistance of halloysite nanoclay-polyester nanocomposites was investigated using fracture mechanics approach. The incorporation of halloysite nanoclay was found to improve the environmental stress cracking resistance of the nano-composites. The storage modulus of nano-composites measured by dynamic mechanical analysis increased remarkably as a function of halloysite nanoclay content. At 0.7 wt% nanoclay, the Tg improved from 72°C to 76°C. The fracture toughness increased up to 33% and time to failure improved 155% with the addition of 0.7 wt% of halloysite nanoclay. The maximum microhardness was found 119% higher for the same nano-filler concentration compared to monolithic polyester. The reinforcement with 1 wt% showed lower fracture toughness due to agglomerations of nanoclay which act as flaws. The presence of agglomerates weakened the bond between nano-particles and matrix hence reduces the environmental stress cracking resistance by halloysite nanoclay reinforcement.

关 键 词:HALLOYSITE NANOCLAY ENVIRONMENTAL Stress CRACKING Resistance NANOCOMPOSITES POLYESTER 

分 类 号:TB3[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象