Advance Techniques in Medical Imaging under Big Data Analysis: Covid-19 Images  

Advance Techniques in Medical Imaging under Big Data Analysis: Covid-19 Images

在线阅读下载全文

作  者:S. Zimeras S. Zimeras(Department of Statistics and Actuarial-Financial Mathematics, University of the Aegean, Karlovassi, Samos)

机构地区:[1]Department of Statistics and Actuarial-Financial Mathematics, University of the Aegean, Karlovassi, Samos

出  处:《Advances in Computed Tomography》2021年第1期1-10,共10页计算机断层扫描(英文)

摘  要:Quantitative analysis of digital images requires detection and segmentation of the borders of the object of interest. Accurate segmentation is required for volume determination, 3D rendering, radiation therapy, and surgery planning. In medical images, segmentation has traditionally been done by human experts. Substantial computational and storage requirements become especially acute when object orientation and scale have to be considered. Therefore, automated or semi-automated segmentation techniques are essential if these software applications are ever to gain widespread clinical use. Many methods have been proposed to detect and segment 2D shapes, most of which involve template matching. Advanced segmentation techniques called Snakes or active contours have been used, considering deformable models or templates. The main purpose of this work is to apply segmentation techniques for the definition of 3D organs (anatomical structures) when big data information has been stored and must be organized by the doctors for medical diagnosis. The processes would be implemented in the CT images from patients with COVID-19.Quantitative analysis of digital images requires detection and segmentation of the borders of the object of interest. Accurate segmentation is required for volume determination, 3D rendering, radiation therapy, and surgery planning. In medical images, segmentation has traditionally been done by human experts. Substantial computational and storage requirements become especially acute when object orientation and scale have to be considered. Therefore, automated or semi-automated segmentation techniques are essential if these software applications are ever to gain widespread clinical use. Many methods have been proposed to detect and segment 2D shapes, most of which involve template matching. Advanced segmentation techniques called Snakes or active contours have been used, considering deformable models or templates. The main purpose of this work is to apply segmentation techniques for the definition of 3D organs (anatomical structures) when big data information has been stored and must be organized by the doctors for medical diagnosis. The processes would be implemented in the CT images from patients with COVID-19.

关 键 词:Segmentation Techniques Big Data Analysis Contour Model Shape Model Radial Basis Function Active Contours Snakes 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象