检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Tohru Morita Ken-ichi Sato Tohru Morita;Ken-ichi Sato(Tohoku University, Sendai, Japan;College of Engineering, Nihon University, Koriyama, Japan)
机构地区:[1]Tohoku University, Sendai, Japan [2]College of Engineering, Nihon University, Koriyama, Japan
出 处:《Advances in Pure Mathematics》2016年第3期180-191,共12页理论数学进展(英文)
摘 要:We know that the hypergeometric function, which is a solution of the hypergeometric differential equation, is expressed in terms of the Riemann-Liouville fractional derivative (fD). The solution of the differential equation obtained by the Euler method takes the form of an integral, which is confirmed to be expressed in terms of the Riemann-Liouville fD of a function. We can rewrite this derivation such that we obtain the solution in the form of the Riemann-Liouville fD of a function. We present a derivation of Kummer’s 24 solutions of the hypergeometric differential equation by this method.We know that the hypergeometric function, which is a solution of the hypergeometric differential equation, is expressed in terms of the Riemann-Liouville fractional derivative (fD). The solution of the differential equation obtained by the Euler method takes the form of an integral, which is confirmed to be expressed in terms of the Riemann-Liouville fD of a function. We can rewrite this derivation such that we obtain the solution in the form of the Riemann-Liouville fD of a function. We present a derivation of Kummer’s 24 solutions of the hypergeometric differential equation by this method.
关 键 词:Fractional Derivative Hypergeometric Differential Equation Hypergeometric Function
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3