Gödel and the Incompleteness of Arithmetic  

Gödel and the Incompleteness of Arithmetic

在线阅读下载全文

作  者:Pinheiro ;Pinheiro(IICSE University, Wilmington, USA)

机构地区:[1]IICSE University, Wilmington, USA

出  处:《Advances in Pure Mathematics》2016年第8期537-545,共9页理论数学进展(英文)

摘  要:People normally believe that Arithmetic is not complete because GÖdel launched this idea a long time ago, and it looks as if nobody has presented sound evidence on the contrary. We here intend to do that perhaps for the first time in history. We prove that what Stanford Encyclopedia has referred to as Theorem 3 cannot be true, and, therefore, if nothing else is presented in favour of GÖdel’s thesis, we actually do not have evidence on the incompleteness of Arithmetic: All available evidence seems to point at the extremely opposite direction.People normally believe that Arithmetic is not complete because GÖdel launched this idea a long time ago, and it looks as if nobody has presented sound evidence on the contrary. We here intend to do that perhaps for the first time in history. We prove that what Stanford Encyclopedia has referred to as Theorem 3 cannot be true, and, therefore, if nothing else is presented in favour of GÖdel’s thesis, we actually do not have evidence on the incompleteness of Arithmetic: All available evidence seems to point at the extremely opposite direction.

关 键 词:Gödel ARITHMETIC Peano AXIOM Classical Logic 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象