On the Prime Geodesic Theorem for Non-Compact Riemann Surfaces  

On the Prime Geodesic Theorem for Non-Compact Riemann Surfaces

在线阅读下载全文

作  者:Muharem Avdispahić Dženan Gušić Muharem Avdispahić;Dženan Gušić(Department of Mathematics, Faculty of Sciences and Mathematics, University of Sarajevo, Sarajevo, Bosnia and Herzegovina)

机构地区:[1]Department of Mathematics, Faculty of Sciences and Mathematics, University of Sarajevo, Sarajevo, Bosnia and Herzegovina

出  处:《Advances in Pure Mathematics》2016年第12期903-914,共13页理论数学进展(英文)

摘  要:We use B. Randol’s method to improve the error term in the prime geodesic theorem for a noncompact Riemann surface having at least one cusp. The case considered is a general one, corresponding to a Fuchsian group of the first kind and a multiplier system with a weight on it.We use B. Randol’s method to improve the error term in the prime geodesic theorem for a noncompact Riemann surface having at least one cusp. The case considered is a general one, corresponding to a Fuchsian group of the first kind and a multiplier system with a weight on it.

关 键 词:Selberg Trace Formula Selberg Zeta Function Prime Geodesic Theorem 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象