Positive-Definite Sparse Precision Matrix Estimation  被引量:1

Positive-Definite Sparse Precision Matrix Estimation

在线阅读下载全文

作  者:Lin Xia Xudong Huang Guanpeng Wang Tao Wu 

机构地区:[1]School of Mathematics and Computer Science, Anhui Normal University, Wuhu, China [2]School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, China

出  处:《Advances in Pure Mathematics》2017年第1期21-30,共10页理论数学进展(英文)

摘  要:The positive-definiteness and sparsity are the most important property of high-dimensional precision matrices. To better achieve those property, this paper uses a sparse lasso penalized D-trace loss under the positive-definiteness constraint to estimate high-dimensional precision matrices. This paper derives an efficient accelerated gradient method to solve the challenging optimization problem and establish its converges rate as . The numerical simulations illustrated our method have competitive advantage than other methods.The positive-definiteness and sparsity are the most important property of high-dimensional precision matrices. To better achieve those property, this paper uses a sparse lasso penalized D-trace loss under the positive-definiteness constraint to estimate high-dimensional precision matrices. This paper derives an efficient accelerated gradient method to solve the challenging optimization problem and establish its converges rate as . The numerical simulations illustrated our method have competitive advantage than other methods.

关 键 词:Positive-Definiteness SPARSITY D-Trace Loss ACCELERATED Gradient Method 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象