检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Lin Xia Xudong Huang Guanpeng Wang Tao Wu
机构地区:[1]School of Mathematics and Computer Science, Anhui Normal University, Wuhu, China [2]School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, China
出 处:《Advances in Pure Mathematics》2017年第1期21-30,共10页理论数学进展(英文)
摘 要:The positive-definiteness and sparsity are the most important property of high-dimensional precision matrices. To better achieve those property, this paper uses a sparse lasso penalized D-trace loss under the positive-definiteness constraint to estimate high-dimensional precision matrices. This paper derives an efficient accelerated gradient method to solve the challenging optimization problem and establish its converges rate as . The numerical simulations illustrated our method have competitive advantage than other methods.The positive-definiteness and sparsity are the most important property of high-dimensional precision matrices. To better achieve those property, this paper uses a sparse lasso penalized D-trace loss under the positive-definiteness constraint to estimate high-dimensional precision matrices. This paper derives an efficient accelerated gradient method to solve the challenging optimization problem and establish its converges rate as . The numerical simulations illustrated our method have competitive advantage than other methods.
关 键 词:Positive-Definiteness SPARSITY D-Trace Loss ACCELERATED Gradient Method
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13