检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yufeng Xia
机构地区:[1]Huaqiao University, Fujian, China
出 处:《Advances in Pure Mathematics》2020年第3期125-154,共30页理论数学进展(英文)
摘 要:The most interesting and famous problem that puzzled the mathematicians all around the world is much likely to be the Fermat’s Last Theorem. However, since the Theorem was proposed, people can’t find a way to solve the problem until Andrew Wiles proved the Fermat’s Last Theorem through a very difficult method called Modular elliptic curves in 1995. In this paper, I firstly constructed a geometric method to prove Fermat’s Last Theorem, and in this way we can easily get the conclusion below: If a and b are integer and?a = b, n ∈ Q and n > 1, the value of c satisfies the function an + bn = cn that can never be integer;if a, b and c are integer and a ≠ b, n is integer and n > 2, the function an + bn = cn cannot be established.The most interesting and famous problem that puzzled the mathematicians all around the world is much likely to be the Fermat’s Last Theorem. However, since the Theorem was proposed, people can’t find a way to solve the problem until Andrew Wiles proved the Fermat’s Last Theorem through a very difficult method called Modular elliptic curves in 1995. In this paper, I firstly constructed a geometric method to prove Fermat’s Last Theorem, and in this way we can easily get the conclusion below: If a and b are integer and?a = b, n ∈ Q and n > 1, the value of c satisfies the function an + bn = cn that can never be integer;if a, b and c are integer and a ≠ b, n is integer and n > 2, the function an + bn = cn cannot be established.
关 键 词:PYTHAGORAS THEOREM Fermat’s LAST THEOREM Geometric Method EQUATION of DEGREE n with One UNKNOWN
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74