Delight and Frustration with Number “Seven” in Plane Geometry and the Regular Heptagon  

Delight and Frustration with Number “Seven” in Plane Geometry and the Regular Heptagon

在线阅读下载全文

作  者:A. Wünsche A. Wünsche(Institut für Physik, Humboldt-Universität, Berlin, Germany (Formerly))

机构地区:[1]Institut für Physik, Humboldt-Universitä t, Berlin, Germany (Formerly)

出  处:《Advances in Pure Mathematics》2021年第1期63-100,共38页理论数学进展(英文)

摘  要:As starting point for patterns with seven-fold symmetry, we investigate the basic possibility to construct the regular heptagon by bicompasses and ruler. To cover the whole plane with elements of sevenfold symmetry is only possible by overlaps and (or) gaps between the building stones. Resecting small parts of overlaps and filling gaps between the heptagons, one may come to simple parqueting with only a few kinds of basic tiles related to sevenfold symmetry. This is appropriate for parqueting with a center of seven-fold symmetry that is illustrated by figures. Choosing from the basic patterns with sevenfold symmetry small parts as elementary stripes or elementary cells, one may form by their discrete translation in one or two different directions periodic bordures or tessellation of the whole plane but the sevenfold point-group symmetry of the whole plane is then lost and there remains only such symmetry in small neighborhoods around one or more centers. From periodic tiling, we make the transition to aperiodic tiling of the plane. This is analogous to Penrose tiling which is mostly demonstrated with basic elements of fivefold symmetry and we show that this is also possible with elements of sevenfold symmetry. The two possible regular star-heptagons and a semi-regular star-heptagon play here a basic role.As starting point for patterns with seven-fold symmetry, we investigate the basic possibility to construct the regular heptagon by bicompasses and ruler. To cover the whole plane with elements of sevenfold symmetry is only possible by overlaps and (or) gaps between the building stones. Resecting small parts of overlaps and filling gaps between the heptagons, one may come to simple parqueting with only a few kinds of basic tiles related to sevenfold symmetry. This is appropriate for parqueting with a center of seven-fold symmetry that is illustrated by figures. Choosing from the basic patterns with sevenfold symmetry small parts as elementary stripes or elementary cells, one may form by their discrete translation in one or two different directions periodic bordures or tessellation of the whole plane but the sevenfold point-group symmetry of the whole plane is then lost and there remains only such symmetry in small neighborhoods around one or more centers. From periodic tiling, we make the transition to aperiodic tiling of the plane. This is analogous to Penrose tiling which is mostly demonstrated with basic elements of fivefold symmetry and we show that this is also possible with elements of sevenfold symmetry. The two possible regular star-heptagons and a semi-regular star-heptagon play here a basic role.

关 键 词:Bicompasses and Ruler Construction Regular Heptagon Regular and Semi-Regular Star-Heptagons Point-Group Symmetry C7 and C7v Parqueting Tiling Tessellation Penrose Tiles Symmetry and Antisymmetry Magnetic and Non-Magnetic Classes Time Inversion Color Groups 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象