An Introduction to the Theory of Matrix Near-Rings  

An Introduction to the Theory of Matrix Near-Rings

在线阅读下载全文

作  者:Saviour Chibeti Iness Kyapwanyama Saviour Chibeti;Iness Kyapwanyama(Economics Department, University of Lusaka, Lusaka, Zambia)

机构地区:[1]Economics Department, University of Lusaka, Lusaka, Zambia

出  处:《Advances in Pure Mathematics》2023年第2期71-95,共25页理论数学进展(英文)

摘  要:Matrix rings are prominent in abstract algebra. In this paper we give an overview of the theory of matrix near-rings. A near-ring differs from a ring in that it does not need to be abelian and one of the distributive laws does not hold in general. We introduce two ways in which matrix near-rings can be defined and discuss the structure of each. One is as given by Beildeman and the other is as defined by Meldrum. Beildeman defined his matrix near-rings as normal arrays under the operation of matrix multiplication and addition. He showed that we have a matrix near-ring over a near-ring if, and only if, it is a ring. In this case it is not possible to obtain a matrix near-ring from a proper near-ring. Later, in 1986, Meldrum and van der Walt defined matrix near-rings over a near-ring as mappings from the direct sum of n copies of the additive group of the near-ring to itself. In this case it can be shown that a proper near-ring is obtained. We prove several properties, introduce some special matrices and show that a matrix notation can be introduced to make calculations easier, provided that n is small.Matrix rings are prominent in abstract algebra. In this paper we give an overview of the theory of matrix near-rings. A near-ring differs from a ring in that it does not need to be abelian and one of the distributive laws does not hold in general. We introduce two ways in which matrix near-rings can be defined and discuss the structure of each. One is as given by Beildeman and the other is as defined by Meldrum. Beildeman defined his matrix near-rings as normal arrays under the operation of matrix multiplication and addition. He showed that we have a matrix near-ring over a near-ring if, and only if, it is a ring. In this case it is not possible to obtain a matrix near-ring from a proper near-ring. Later, in 1986, Meldrum and van der Walt defined matrix near-rings over a near-ring as mappings from the direct sum of n copies of the additive group of the near-ring to itself. In this case it can be shown that a proper near-ring is obtained. We prove several properties, introduce some special matrices and show that a matrix notation can be introduced to make calculations easier, provided that n is small.

关 键 词:NEAR-RINGS First Near-Ring Isomorphism Zero Symmetric Near-Ring Near-Ring Module and Matrix Near-Rings 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象