Convergence of a Sinusoidal Series with an Infinite Integral  

Convergence of a Sinusoidal Series with an Infinite Integral

在线阅读下载全文

作  者:Fate Shan Liping Zhu Fate Shan;Liping Zhu(School of Mathematics and Data Science, Changji College, Changji, China)

机构地区:[1]School of Mathematics and Data Science, Changji College, Changji, China

出  处:《Advances in Pure Mathematics》2023年第10期642-650,共9页理论数学进展(英文)

摘  要:In this paper, we study the relationship between the convergence of the sinusoidal series and the infinity integrals (any real number α ∈[0,1], parameter p > 0). First of all, we study the convergence of the series (any real number α ∈[0,1], parameter p > 0), mainly using the estimation property of the order to obtain that the series diverges when 0 p ≤1-α, the series converges conditionally when 1-α p ≤1, and the series converges absolutely when p >1. In the next part, we study the convergence state of the infinite integral (any real number α ∈[0,1], parameter p > 0), and get that when 0 p ≤1-α, the infinite integral diverges;when 1-α p ≤1, the infinite integral conditionally converges;when p >1, the infinite integral absolutely converges. Comparison of the conclusions of the above theorem, it is not difficult to derive the theorem: the level of and the infinity integral with the convergence of the state (any real number α ∈[0,1], the parameter p >0), thus promoting the textbook of the two with the convergence of the state requires the function of the general term or the product of the function must be monotonically decreasing conditions.In this paper, we study the relationship between the convergence of the sinusoidal series and the infinity integrals (any real number α ∈[0,1], parameter p > 0). First of all, we study the convergence of the series (any real number α ∈[0,1], parameter p > 0), mainly using the estimation property of the order to obtain that the series diverges when 0 p ≤1-α, the series converges conditionally when 1-α p ≤1, and the series converges absolutely when p >1. In the next part, we study the convergence state of the infinite integral (any real number α ∈[0,1], parameter p > 0), and get that when 0 p ≤1-α, the infinite integral diverges;when 1-α p ≤1, the infinite integral conditionally converges;when p >1, the infinite integral absolutely converges. Comparison of the conclusions of the above theorem, it is not difficult to derive the theorem: the level of and the infinity integral with the convergence of the state (any real number α ∈[0,1], the parameter p >0), thus promoting the textbook of the two with the convergence of the state requires the function of the general term or the product of the function must be monotonically decreasing conditions.

关 键 词:Sinusoidal Series Estimation of Order Convergent States Infinite Integrals Discriminant Method 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象