Existence of a Hölder Continuous Extension on Embedded Balls of the 3-Torus for the Periodic Navier Stokes Equations  

Existence of a Hölder Continuous Extension on Embedded Balls of the 3-Torus for the Periodic Navier Stokes Equations

在线阅读下载全文

作  者:Terry E. Moschandreou Terry E. Moschandreou(Intermediate Science and Mathematics, TVDSB London Ontario, Canada)

机构地区:[1]Intermediate Science and Mathematics, TVDSB London Ontario, Canada

出  处:《Advances in Pure Mathematics》2024年第2期118-138,共21页理论数学进展(英文)

摘  要:This article gives a general model using specific periodic special functions, which is degenerate elliptic Weierstrass P functions whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of cells of the 3-Torus. Satisfying a divergence-free vector field and periodic boundary conditions respectively with a general spatio-temporal forcing term which is smooth and spatially periodic, the existence of solutions which have finite time singularities can occur starting with the first derivative and higher with respect to time. The existence of a subspace of the solution space where v<sub>3</sub> is continuous and {C, y<sub>1</sub>, y<sub>1</sub><sup>2</sup>}, is linearly independent in the additive argument of the solution in terms of the Lambert W function, (y<sub>1</sub><sup>2</sup>=y<sub>2</sub>, C∈R) together with the condition v<sub>2</sub>=-2y<sub>1</sub>v<sub>1</sub>. On this subspace, the Biot Savart Law holds exactly [see Section 2 (Equation (13))]. Also on this subspace, an expression X (part of PNS equations) vanishes which contains all the expressions in derivatives of v<sub>1</sub> and v<sub>2</sub> and the forcing terms in the plane which are related as with the cancellation of all such terms in governing PDE. The y<sub>3</sub> component forcing term is arbitrarily small in ε ball where Weierstrass P functions touch the center of the ball both for inviscid and viscous cases. As a result, a significant simplification occurs with a v<sub>3 </sub>only governing PDE resulting. With viscosity present as v changes from zero to the fully viscous case at v =1 the solution for v<sub>3</sub> reaches a peak in the third component y<sub>3</sub>. Consequently, there exists a dipole which is not centered at the center of the cell of the Lattice. Hence since the dipole by definition has an equal in magnitude positive and negative peak in y<sub>3</sub>, then the dipole Riemann cut-off surface is covered by a closed surface which is the spherThis article gives a general model using specific periodic special functions, which is degenerate elliptic Weierstrass P functions whose presence in the governing equations through the forcing terms simplify the periodic Navier Stokes equations (PNS) at the centers of cells of the 3-Torus. Satisfying a divergence-free vector field and periodic boundary conditions respectively with a general spatio-temporal forcing term which is smooth and spatially periodic, the existence of solutions which have finite time singularities can occur starting with the first derivative and higher with respect to time. The existence of a subspace of the solution space where v<sub>3</sub> is continuous and {C, y<sub>1</sub>, y<sub>1</sub><sup>2</sup>}, is linearly independent in the additive argument of the solution in terms of the Lambert W function, (y<sub>1</sub><sup>2</sup>=y<sub>2</sub>, C∈R) together with the condition v<sub>2</sub>=-2y<sub>1</sub>v<sub>1</sub>. On this subspace, the Biot Savart Law holds exactly [see Section 2 (Equation (13))]. Also on this subspace, an expression X (part of PNS equations) vanishes which contains all the expressions in derivatives of v<sub>1</sub> and v<sub>2</sub> and the forcing terms in the plane which are related as with the cancellation of all such terms in governing PDE. The y<sub>3</sub> component forcing term is arbitrarily small in ε ball where Weierstrass P functions touch the center of the ball both for inviscid and viscous cases. As a result, a significant simplification occurs with a v<sub>3 </sub>only governing PDE resulting. With viscosity present as v changes from zero to the fully viscous case at v =1 the solution for v<sub>3</sub> reaches a peak in the third component y<sub>3</sub>. Consequently, there exists a dipole which is not centered at the center of the cell of the Lattice. Hence since the dipole by definition has an equal in magnitude positive and negative peak in y<sub>3</sub>, then the dipole Riemann cut-off surface is covered by a closed surface which is the spher

关 键 词:Navier-Stokes PNS 3-Torus PERIODIC Ball Sphere Hölder CONTINUOUS Riemann-Surface Uniqueness 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象