检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Michael M. Anthony Michael M. Anthony(Department of Engineering, Enertron Inc., Hohenwald, Tennessee, USA)
机构地区:[1]Department of Engineering, Enertron Inc., Hohenwald, Tennessee, USA
出 处:《Advances in Pure Mathematics》2024年第6期487-494,共8页理论数学进展(英文)
摘 要:The Riemann hypothesis is intimately connected to the counting functions for the primes. In particular, Perron’s explicit formula relates the prime counting function to fixed points of iterations of the explicit formula with particular relations involving the trivial and non-trivial roots of the Riemann Zeta function and the Primes. The aim of the paper is to demonstrate this relation at the fixed points of iterations of explicit formula, defined by functions of the form limT∈Ν→∞fT(zw)=zw,where, zwis a real number.The Riemann hypothesis is intimately connected to the counting functions for the primes. In particular, Perron’s explicit formula relates the prime counting function to fixed points of iterations of the explicit formula with particular relations involving the trivial and non-trivial roots of the Riemann Zeta function and the Primes. The aim of the paper is to demonstrate this relation at the fixed points of iterations of explicit formula, defined by functions of the form limT∈Ν→∞fT(zw)=zw,where, zwis a real number.
关 键 词:Perron Fixed Points ITERATIONS Number Theory Riemann Hypothesis ITERATIONS INVARIANCE PRIMES
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.225.235.148